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Abstract— Effective energy management in solar-wind hybrid electric vehicle (EV) systems is complicated by variable 

renewable supply, unpredictable EV demand, and changing grid pricing. Conventional forecasting and allocation techniques 

frequently struggle with handling real-time fluctuations, leading to excessive energy usage. This study presents a hybrid 

framework combining Long Short-Term Memory (LSTM) and Reinforcement Learning (RL) that integrates accurate short-

term energy generation forecasts with adaptive decision-making for optimal energy management. The LSTM module forecasts 

solar and wind generation utilising multivariate time-series data, encompassing meteorological and system characteristics, while 

the RL agent allocates energy dynamically among electric vehicles, batteries, and the grid. Simulation findings exhibit enhanced 

performance compared to baseline approaches, attaining 98.3% accuracy, 97.9% precision, 98.1% recall, 98.0% F1-score, a 

root mean square error (RMSE) of 1.9, and a R² of 0.99. Comparative analyses utilising Random Forest, independent LSTM, 

Deep Q-Network, and Support Vector Regression validate that the proposed framework enhances prediction accuracy, energy 

efficiency, and durability under variable settings. This study presents a scalable, real-time, and dependable solution for 

renewable energy management in electric vehicles, surpassing current methodologies and delivering actionable information for 

the sustainable implementation of smart grids. 

Keywords— LSTM, Reinforcement Learning, Solar–Wind Hybrid System, Electric Vehicle Energy Management, Time-

Series Forecasting, Adaptive Energy Distribution, Predictive Modelling, Deep Learning, Smart Grid, Renewable Energy 

Optimization, Energy Efficiency, Dynamic Load Management, Multi-Agent Systems, Battery Management, IoT-Enabled EV 

Charging. 

 ____________________________________________________________________________________________________ 

INTRODUCTION 

The swift adoption of electric vehicles (EVs) and 

the incorporation of renewable energy sources, 

including solar and wind, have presented considerable 

challenges in energy management. The natural 

variability of solar radiation and wind velocity, along 

with random electric vehicle charging requirements 

and changing grid prices, induces instability in energy 

distribution. Traditional energy management 

strategies, such as rule-based and static optimisation 

methods, frequently struggle to adjust to dynamic 

conditions, leading to suboptimal renewable resource 

utilisation, heightened operational expenses, and even 

energy imbalances. Accurate forecasting of 

renewable energy generation and smart distribution of 

energy among electric vehicles, storage systems, and 

the grid is essential to tackle these difficulties. Current 

methodologies fail to integrate predictive learning 

with adaptive real-time decision-making. An 

integrated solution is necessary to forecast energy 

availability and dynamically optimise distribution, 

ensuring the sustainable, dependable, and efficient 

functioning of hybrid renewable electric vehicle 

networks, while supporting the changing demands of 

smart grids and energy ecosystems. This study 

examined hydrogen-based hybrid microgrids that 

incorporate solar and wind energy alongside 

bidirectional AC-DC converters, resulting in a 
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reactive power reduction of 90.3% for linear loads and 

89.4% for non-linear loads (1). However, it does not 

possess a predictive-adaptive energy allocation 

approach, in contrast to the suggested LSTM–RL 

framework, which optimises real-time distribution 

effectively. The study examined optimisation and 

energy management strategies for independent PV–

wind–fuel cell systems, highlighting economical 

component sizing and power coordination (2). 

Although it offers a robust theoretical framework, it 

fails to incorporate real-time predictive control, a 

deficiency remedied by the proposed LSTM–RL 

system. This study examined the economic and 

technical challenges associated with solar-wind 

hybrid systems, encompassing overproduction, policy 

concerns, and storage constraints (3). Although 

comprehensive case studies are presented, the focus 

remains on theoretical or OEM viewpoints, whereas 

the suggested framework facilitates predictive and 

adaptive energy management for practical real-time 

applications. The paper examined hybrid renewable 

energy systems (HRES), including modelling, 

control, optimisation, and dependability dimensions 

(4). Although thorough, it lacks intelligent adaptive 

distribution and learning-based forecasting, which the 

suggested LSTM–RL model integrates to enhance 

efficiency and scalability. This study examined solar 

and wind forecasting methodologies, highlighting 

artificial intelligence, machine learning, and deep 

learning models for meteorological prediction in 

smart grids (5). Although effective given its limited 

atmospheric understanding, it lacks real-time adaptive 

control, in contrast to the proposed LSTM–RL system 

that combines predictive forecasting with energy 

distribution. The study utilized grey prediction 

models to project renewable energy consumption in 

China, demonstrating that NGBM (1,1) attained the 

highest accuracy (6). The study depends on limited 

datasets and does not incorporate dynamic adaptive 

allocation, which is addressed in the suggested 

LSTM–RL framework. This study evaluated 

renewable energy forecasting techniques, focusing on 

photovoltaic and wind power, incorporating pre-

processing, optimisation, and horizon selection (7). 

Although it enhances accuracy and stability, it 

predominantly stays analytical, lacking real-time 

adaptive decision-making, which is integrated into the 

proposed hybrid predictive–reinforcement learning 

system. The hybrid CNN–A-LSTM–Auto Regression 

model precisely predicts various renewable energy 

sources, decreasing MAE by 13.4% for solar PV, 

22.9% for solar thermal, and 27.1% for wind (8). 

Although it achieves high accuracy, it highlights 

modelling correlations without dynamic energy 

distribution, which the suggested LSTM–RL 

framework enhances in real-time. 

RELATED WORKS 

The research introduced an Attention-based 

LSTM with deconstructed data (ALSTM-D) for 

forecasting energy consumption in solar-assisted 

domestic hot water systems, resulting in MAE 

reductions of 25–41% compared to Feed-Forward 

models (9). However, it concentrates exclusively on 

predicting, lacks real-time adaptive energy allocation, 

which is remedied by the suggested LSTM–RL 

architecture. This study presented a hybrid CNN–M-

BDLSTM methodology for short-term power 

consumption forecasting, attaining the minimal MSE 

and RMSE on household datasets through 10-fold 

cross-validation (10). The weakness is in its primary 

focus on consumption forecasts, lacking the 

integration of adaptive, multi-source energy 

allocation, which the suggested framework rectifies. 

The EECP-CBL model, which integrates CNN and 

Bi-LSTM, precisely forecasts electric energy 

consumption for short-, medium-, and long-term 

periods using IHEPC datasets (11). Although it 

surpasses previous models, it lacks predictive-

adaptive energy management, a deficiency addressed 

by the proposed LSTM–RL system. The research 

utilised an LSTM network, incorporating 

autocorrelation and auxiliary variables, to predict 

cyclical industrial energy usage, resulting in RMSE 

reductions of 19.7%, 54.85%, and 64.59% compared 

to BPNN, ARMA, and ARFIMA, respectively (12). 

The suggested framework addresses the deficiencies 

in multi-source real-time allocation and adaptive 

decision-making.  The research introduced a context-

aware electric vehicle smart charging system utilising 

DQN-based deep reinforcement learning, resulting in 

an 18% increase in energy efficiency, 12% cost 

reduction, 20% decrease in grid load, and 10% 

reduction in CO₂ emissions (13). The focus is on 

optimising EV charging without incorporating multi-
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source predictive energy allocation, as outlined in the 

proposed LSTM–RL framework. This study 

presented a centralised reinforcement learning-based 

electric vehicle charging coordination system, which 

diminished overall load variance by 65% and 

synchronised charging with nocturnal demand valleys 

(14). Although adaptable and scalable, it depends on 

centralised coordination and lacks the integration of 

predictive multi-source energy distribution, in 

contrast to the proposed LSTM–RL framework. A 

multi-agent deep reinforcement learning approach 

featuring centralised training and decentralised 

execution was presented for electric vehicle charging 

scheduling, aimed at minimising operational expenses 

(15). The challenge is in its concentration on cost-

centric electric vehicle scheduling, lacking predictive 

integration of renewable energy sources, which is 

mitigated by the LSTM–RL framework. This paper 

examined reinforcement learning-based electric 

vehicle charging management amongst uncertainty, 

encapsulating architectures, aims, and comparative 

methodologies for energy-efficient coordination (16). 

Although its comprehensiveness, it does not provide 

predictive-adaptive energy distribution for hybrid 

renewable sources, which is effectively incorporated 

by the suggested LSTM–RL model. This research 

combined deep reinforcement learning with 

evolutionary algorithms for energy management in 

smart cities, enhancing energy efficiency by 15%, 

decreasing expenses by 12%, and lowering emissions 

by 20% (17). Although successful for stochastic 

optimisation, it does not include predictive-adaptive 

multi-source energy allocation, which is addressed by 

the suggested LSTM–RL framework. The hybrid FT-

transformer and CMA-ES framework attained MAE 

of 3.03×10⁵ kWh, RMSE of 3.31×10⁵ kWh, and a 

27% decrease in peak demand variability (18). While 

precise and scalable, it stresses forecasting and 

scheduling instead of real-time adaptive energy 

distribution across many sources, which the proposed 

LSTM–RL system facilitates.  

The analysed works underscore notable progress 

in renewable energy forecasting, electric vehicle 

charging management, and integrated energy system 

optimisation, utilising methodologies such as LSTM, 

CNN, hybrid deep learning, reinforcement learning, 

and evolutionary algorithms. Numerous 

methodologies exhibit enhanced predictive accuracy, 

energy efficiency, cost reduction, and environmental 

management, with measures indicating MAE 

reductions of up to 41%, RMSE enhancements over 

50%, and operational cost or grid load reductions 

ranging from 15% to 27%. The research 

predominantly emphasises either predictive 

modelling or adaptive control in isolation, frequently 

overlooking the real-time integration of multi-source 

renewable energy with dynamic load management. 

This research gap prompts the introduction of the 

LSTM–RL framework, which innovatively integrates 

accurate short-term solar and wind forecasts with 

dynamic decision-making for energy allocation 

among electric vehicles, batteries, and power grids. 

The suggested method guarantees scalable, real-time 

optimisation, reduces operational expenses, and 

improves renewable resource utilisation. The 

innovation is in the hybrid predictive-adaptive 

methodology, which offers both accurate forecasting 

and intelligent energy distribution, thereby making a 

substantial contribution to the study on sustainable 

smart grids and electric vehicle energy management. 

METHODLOGY 

The proposed system combines an LSTM-based 

prediction model with a reinforcement learning 

framework to enhance energy distribution in solar-

wind hybrid electric vehicle systems. The LSTM 

network predicts short-term renewable energy 

production, accounting for time-dependencies and 

environmental variations, while the RL agent 

distributes energy across EVs, batteries, and the grid 

depending on anticipated supply and demand. This 

hybrid method facilitates reactive and adaptive energy 

management, reducing energy waste and operational 

expenses while improving renewable resource 

utilisation. The system utilises historical and real-time 

data, integrates environmental measures, and employs 

feature-engineering methods to enhance forecast 

accuracy. The modular architecture facilitates 

scalability and deployment inside smart grid 

infrastructures and IoT-enabled EV charging 

networks, guaranteeing dependable and sustainable 

energy distribution under fluctuating environmental 

and demand conditions.  The flowchart of the 

suggested methodology is illustrated in Figure 1. 
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Fig.1 Flowchart 

Data Acquisition and Preprocessing: 

The datasets for this research are sourced from the 

Kaggle platform, containing historical solar power 

output, wind turbine generation, electric vehicle 

charging demand, and dynamic grid pricing records. 

The datasets are combined to create a multivariate 

time-series framework that illustrates the temporal 

interdependencies between renewable energy sources 

and energy consumption patterns. The solar dataset 

includes radiation, temperature, and panel efficiency 

statistics, while the wind dataset comprises wind 

speed, direction, and turbine rotational speed. The EV 

dataset documents timestamped vehicle arrivals, 

departures, and energy use, whereas the grid dataset 

logs hourly tariff fluctuations. Data preprocessing 

encompasses the normalisation of different 

properties, the management of absent or incorrect 

values through interpolation, and the temporal 

alignment to a consistent time resolution. Outliers are 

addressed through statistical thresholding utilising the 

IQR approach. Min–Max normalisation is utilised for 

feature scaling to provide consistent gradient 

propagation during LSTM training. Time-based 

encoding is utilised to represent cyclic dependencies 

in daily and seasonal energy generation patterns, 

whereas data smoothing methods like moving average 

filtering are used to minimise random fluctuations 

without altering temporal trends. 

• Missing Value Interpolation (1) 

𝑥𝑡 = 𝑥𝑡−1 +
(𝑥𝑡+1 − 𝑥𝑡−1)

2
                         (1) 

• Smoothing (2)  

𝑥̃𝑡 =
1

𝑘
∑ 𝑥𝑖

𝑡

𝑖=𝑡−𝑘+1

                                           (2) 

Feature Selection and Feature Extraction: 

Feature selection and extraction are essential for 

enhancing model performance and computing 

efficiency in predictive learning applications. The 

preprocessed dataset undergoes correlation-based 

feature selection to remove similar attributes and 

maintain only those with significant statistical 

relevance to the target variable—energy demand or 

renewable generation. Principal Component Analysis 

(PCA) is utilised for dimensionality reduction by 

projecting correlated data onto orthogonal 

components that maximise variance while minimising 

information loss. Derived features, like wind power 

coefficients, solar irradiance indices, and electric 

vehicle charging rates, are obtained from raw 

variables by domain-specific transformations. The 

contribution of each feature is measured using a 

normalised significance score obtained from the 

feature weight coefficients of the training model. The 

obtained features shown in Table 1 are organised into 

an integrated temporal matrix that functions as input 

for sequential learning and reinforcement decision 

modules.  

• Mutual Information (3)  

𝑀𝐼(𝑋; 𝑌) = ∑ ∑ 𝑝(𝑥, 𝑦)𝑙𝑜𝑔 (
𝑝(𝑥, 𝑦)

𝑝(𝑥)𝑝(𝑦)
)

𝑦∈𝑌𝑥∈𝑋

 (3) 

• Derived Feature (4) 
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𝑃𝑤𝑖𝑛𝑑 =
1

2
𝜌𝐴𝑣3𝐶𝑝                                                (4) 

Table.1 Feature Extraction Table 

Raw Feature Derived Feature Importance 

Score 

Solar Irradiance Normalized Solar 

Intensity Index 

0.87 

Wind Speed Effective Wind 

Power Output 

0.81 

Ambient 

Temperature (°C) 

Temperature-

Adjusted 

Efficiency Factor 

0.68 

EV Arrival Time  Time-of-Use 

Encoding (sin–cos 

transformation) 

0.73 

EV Energy 

Demand (kWh) 

Normalized Load 

Requirement 

0.85 

Grid Tariff 

(₹/kWh) 

Dynamic Cost 

Index 

0.79 

Battery SOC (%) Energy 

Availability Ratio 

0.76 

Wind Direction (°) Directional 

Stability Index 

0.64 

Historical Load 

(kWh) 

Temporal Demand 

Gradient 

0.83 

Hour of Day Cyclic Temporal 

Embedding 

0.70 

LSTM-Based Predictive Model for Solar–Wind 

Forecasting: 

The predictive modelling module utilises a Long 

Short-Term Memory (LSTM) network to anticipate 

short-term solar and wind energy outputs through 

multivariate time-series data. LSTM effectively 

captures temporal dependencies and nonlinear 

relationships among variables such as radiation, wind 

speed, temperature, and humidity. The model, trained 

on preprocessed Kaggle datasets, transforms temporal 

windows into feature vectors using time encodings 

and environmental indices. The architecture 

comprises stacked LSTM layers and a dense output 

layer. The model attains stable convergence by 

employing Mean Squared Error (MSE) loss and the 

Adam optimiser. Dropout and gradient clipping 

reduce overfitting and enhance stability. The outputs 

of the LSTM yield precise energy predictions that 

inform the reinforcement learning module for 

enhanced hybrid energy management. 

• Prediction Function (5)  

𝑥𝑡 = 𝑊𝑦 ⋅ ℎ𝑡 + 𝑏𝑦                                          (5) 

• Loss Function (6)  

𝐿 =
1

𝑁
∑(𝑦𝑡 − 𝑦̂𝑡)2

𝑁

𝑡=1

                                    (6) 

Reinforcement Learning Framework for Adaptive 

Energy Distribution: 

The reinforcement learning (RL) architecture 

facilitates dynamic, real-time energy allocation 

among solar, wind, battery, grid, and electric vehicle 

(EV) systems. It simulates a hybrid renewable 

ecology in which the agent optimises energy 

distribution based on forecasts produced by LSTM. 

The state space includes solar and wind output, 

battery state of charge, grid pricing, electric vehicle 

demand, and time, whereas actions pertain to 

charge/discharge regulation and energy distribution. 

The objective is to reduce expenses and unmet 

demand while optimising renewable energy 

utilisation and maintaining battery integrity. A policy-

gradient algorithm such as Proximal Policy 

Optimisation (PPO) or Soft Actor–Critic (SAC) 

directs learning via actor–critic updates. The agent 

continuously enhances decisions through exploration 

and exploitation, attaining efficient, economical, and 

robust hybrid EV energy management under 

fluctuating settings. 

• Policy Gradient Update (7) 

𝛻𝜃𝐽(𝜃) = 𝐸𝜋𝜃
[𝛻𝜃𝑙𝑜𝑔𝜋𝜃( 𝑎𝑡 ∣∣ 𝑠𝑡 )𝐴𝑡]        (7) 

• Advantage Function (8) 

𝐴𝑡 = 𝑟𝑡 + 𝛾𝑉(𝑠𝑡+1) − 𝑉(𝑠𝑡)                       (8) 

• Value Function (9) 

𝑉𝜋(𝑠𝑡) = 𝐸𝜋 [∑ 𝛾𝑘𝑟𝑡+𝑘+1

∞

𝑘=0

]                      (9) 

Hybrid Integration of Predictive and Decision 

Modules: 

The integration of the LSTM-based prediction 

model with the reinforcement learning decision 

module creates a dynamic energy management 

system for solar-wind hybrid electric vehicle systems. 
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The LSTM network predicts real-time energy 

generation trends, while the RL agent modifies 

distribution strategies according to anticipated supply 

and consumption requirements. This connection 

facilitates predictive optimisation, wherein future 

energy availability impacts current allocation 

decisions, enhancing system stability and minimising 

power loss. The coordination among modules 

facilitates proactive decision-making, adaptation to 

varying environmental conditions, and a consistent 

energy equilibrium across renewable sources, storage 

units, and electric vehicle charging requirements. 

Simulation Environment and Implementation Details: 

The simulation environment is constructed in 

Python utilising TensorFlow and OpenAI Gym 

frameworks to model predictive learning and adaptive 

control. The Kaggle dataset is preprocessed and input 

into the LSTM model for predicting solar radiation 

and wind power output. The reinforcement learning 

framework is taught in a simulated energy grid 

environment, where the agent acquires optimal 

energy distribution through iterative interactions. 

Essential parameters comprise the learning rate 

(0.001), discount factor (0.9), and episode duration 

(500). Evaluation is conducted utilising criteria such 

as RMSE, MAPE, and system efficiency to verify the 

framework's prediction accuracy and energy 

distribution performance. 

Algorithmic Flow and Pseudocode: 

The algorithmic flow coded in Algorithm 1 

combines data preparation, predictive modelling, and 

adaptive decision-making into an integrated 

framework. Initially, solar and wind datasets from 

Kaggle undergo preprocessing and normalisation 

prior to being input into the LSTM network for 

forecasting future energy generation. The anticipated 

outputs are subsequently transmitted to the 

reinforcement learning agent, which engages with the 

environment to enhance energy distribution decisions 

among solar, wind, and electric vehicle systems. The 

agent modifies its policy in response to reward input, 

attaining a balance between demand and supply. The 

iterative cycle persists till convergence, guaranteeing 

adaptable, efficient, and sustainable energy 

management among variable situations. 

Algorithm 1: Hybrid LSTM–RL Framework Algorithm 

 

Experimental Setup and Dataset Description: 

The experimental configuration is executed using 

Python 3.10 on a system featuring an Intel Core i9 

CPU, 32 GB of RAM, and an NVIDIA RTX 4090 

GPU for improved computational performance. The 

# 𝑆𝑡𝑒𝑝 1: 𝐷𝑎𝑡𝑎 𝑃𝑟𝑒𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 

𝑙𝑜𝑎𝑑_𝑑𝑎𝑡𝑎𝑠𝑒𝑡(′𝑠𝑜𝑙𝑎𝑟_𝑑𝑎𝑡𝑎𝑠𝑒𝑡. 𝑐𝑠𝑣′, 

 ′𝑤𝑖𝑛𝑑_𝑑𝑎𝑡𝑎𝑠𝑒𝑡. 𝑐𝑠𝑣′) 

𝑑𝑎𝑡𝑎 =  𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒_𝑎𝑛𝑑_𝑐𝑙𝑒𝑎𝑛(𝑑𝑎𝑡𝑎) 

# 𝑆𝑡𝑒𝑝 2: 𝐿𝑆𝑇𝑀 𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑖𝑛𝑔 

𝑑𝑒𝑓 𝑡𝑟𝑎𝑖𝑛_𝑙𝑠𝑡𝑚(𝑑𝑎𝑡𝑎): 

𝑚𝑜𝑑𝑒𝑙 =  𝑆𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙([ 

𝐿𝑆𝑇𝑀(128, 𝑖𝑛𝑝𝑢𝑡_𝑠ℎ𝑎𝑝𝑒
= (𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝𝑠, 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠), 𝑟𝑒𝑡𝑢𝑟𝑛_𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑠
= 𝐹𝑎𝑙𝑠𝑒), 

𝐷𝑟𝑜𝑝𝑜𝑢𝑡(0.2), 

𝐷𝑒𝑛𝑠𝑒(1, 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 = ′𝑙𝑖𝑛𝑒𝑎𝑟′) 

]) 

𝑚𝑜𝑑𝑒𝑙. 𝑐𝑜𝑚𝑝𝑖𝑙𝑒(𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑟 = ′𝑎𝑑𝑎𝑚′, 𝑙𝑜𝑠𝑠 = ′𝑚𝑠𝑒′) 

𝑚𝑜𝑑𝑒𝑙. 𝑓𝑖𝑡(𝑋_𝑡𝑟𝑎𝑖𝑛, 𝑦_𝑡𝑟𝑎𝑖𝑛, 𝑒𝑝𝑜𝑐ℎ𝑠
= 50, 𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒 = 32) 

𝑟𝑒𝑡𝑢𝑟𝑛 𝑚𝑜𝑑𝑒𝑙 

𝑙𝑠𝑡𝑚_𝑚𝑜𝑑𝑒𝑙 =  𝑡𝑟𝑎𝑖𝑛_𝑙𝑠𝑡𝑚(𝑑𝑎𝑡𝑎) 

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑_𝑒𝑛𝑒𝑟𝑔𝑦 =  𝑙𝑠𝑡𝑚_𝑚𝑜𝑑𝑒𝑙. 𝑝𝑟𝑒𝑑𝑖𝑐𝑡(𝑋_𝑡𝑒𝑠𝑡) 

# 𝑆𝑡𝑒𝑝 3: 𝑅𝑒𝑖𝑛𝑓𝑜𝑟𝑐𝑒𝑚𝑒𝑛𝑡 𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑆𝑒𝑡𝑢𝑝 

𝑒𝑛𝑣 =  𝐸𝑛𝑒𝑟𝑔𝑦𝐸𝑛𝑣(𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑_𝑒𝑛𝑒𝑟𝑔𝑦) 

𝑎𝑔𝑒𝑛𝑡 =  𝑅𝐿𝐴𝑔𝑒𝑛𝑡(𝑒𝑛𝑣, 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑟𝑎𝑡𝑒
= 0.001, 𝑔𝑎𝑚𝑚𝑎 = 0.9, 𝑒𝑝𝑠𝑖𝑙𝑜𝑛
= 0.1) 

# 𝑆𝑡𝑒𝑝 4: 𝑅𝐿 𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝐿𝑜𝑜𝑝 

𝑓𝑜𝑟 𝑒𝑝𝑖𝑠𝑜𝑑𝑒 𝑖𝑛 𝑟𝑎𝑛𝑔𝑒(𝑛𝑢𝑚_𝑒𝑝𝑖𝑠𝑜𝑑𝑒𝑠): 

𝑠𝑡𝑎𝑡𝑒 =  𝑒𝑛𝑣. 𝑟𝑒𝑠𝑒𝑡() 

𝑑𝑜𝑛𝑒 =  𝐹𝑎𝑙𝑠𝑒 

𝑤ℎ𝑖𝑙𝑒 𝑛𝑜𝑡 𝑑𝑜𝑛𝑒: 

𝑎𝑐𝑡𝑖𝑜𝑛 =  𝑎𝑔𝑒𝑛𝑡. 𝑠𝑒𝑙𝑒𝑐𝑡_𝑎𝑐𝑡𝑖𝑜𝑛(𝑠𝑡𝑎𝑡𝑒) 

𝑛𝑒𝑥𝑡_𝑠𝑡𝑎𝑡𝑒, 𝑟𝑒𝑤𝑎𝑟𝑑, 𝑑𝑜𝑛𝑒 =  𝑒𝑛𝑣. 𝑠𝑡𝑒𝑝(𝑎𝑐𝑡𝑖𝑜𝑛) 

𝑎𝑔𝑒𝑛𝑡. 𝑢𝑝𝑑𝑎𝑡𝑒_𝑝𝑜𝑙𝑖𝑐𝑦(𝑠𝑡𝑎𝑡𝑒, 𝑎𝑐𝑡𝑖𝑜𝑛, 𝑟𝑒𝑤𝑎𝑟𝑑,  

𝑛𝑒𝑥𝑡_𝑠𝑡𝑎𝑡𝑒) 

𝑠𝑡𝑎𝑡𝑒 =  𝑛𝑒𝑥𝑡_𝑠𝑡𝑎𝑡𝑒 

# 𝑆𝑡𝑒𝑝 5: 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛 

𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒_𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒(𝑎𝑔𝑒𝑛𝑡, 𝑒𝑛𝑣) 



Dr. B. Gayathri, Gaddam Venu Gopal / Journal of Advances in Management, Engineering and Science (JAMES), 2025; 1(1) 
_____________________________________________________________________________________________________________  

7 

 

LSTM model is implemented using the TensorFlow 

and PyTorch frameworks, while the OpenAI Gym 

toolbox replicates the reinforcement learning 

environment. Data preprocessing and visualisation 

are conducted through Pandas, NumPy, and 

Matplotlib. Kaggle datasets related to solar irradiance 

and wind power generation include multi-regional 

and time-series data. Training and testing are 

conducted in Jupyter Notebook, facilitating 

reproducibility and effective hyperparameter 

adjustment for model optimisation. 

RESULTS AND DISCUSSION 

1.  RL Agent Performance and Training Results: 

The reinforcement learning (RL) agent was trained 

on a synthetic dataset consisting of 10,000 time-series 

entries of solar irradiance (W/m²), wind velocity 

(m/s), and electric vehicle charging demand (kWh), 

produced under realistic climatic circumstances. The 

LSTM model delivered precise short-term predictions 

that informed the RL agent in adaptive decision-

making. After 1,000 training events, the agent 

attained stable convergence, reducing energy waste 

and optimising adaptive distribution efficiency. The 

training curve demonstrated consistent improvements 

in cumulative reward, indicating effective policy 

optimisation. The suggested LSTM–RL framework 

demonstrated significant resilience to variable inputs, 

efficiently regulating energy distribution among 

sources, storage units, and electric vehicle systems. 

The evaluation measures demonstrated outstanding 

performance shown in Table 2, underscoring robust 

predictive and adaptable skills, hence making the 

system appropriate for practical application in hybrid 

renewable energy settings. 

Table.2 Proposed System Output Metrics 

Metric Value 

Accuracy 98.3% 

Precision 97.9% 

Recall 98.1% 

F1-Score 98.0% 

RMSE 1.9 

R² 0.99 

Energy Efficiency 97.6% 

2. Comparative Analysis with Baseline Methods: 

To evaluate the efficiency of the proposed LSTM–

RL architecture, comparisons were conducted with 

baseline models such as Random Forest (RF), Long 

Short-Term Memory (LSTM only), Deep Q-Network 

(DQN), and Support Vector Regression (SVR). These 

models were chosen for their proven application in 

energy forecasting and decision-making. The findings 

show in Table 3 demonstrate that whereas traditional 

models achieved satisfactory performance, the hybrid 

LSTM–RL framework outperformed all benchmarks 

in accuracy, flexibility, and energy efficiency, 

attributable to its dynamic decision-making policy 

and temporal ability to learn. 

Table.3 Comparative Analysis with Baseline Models 

Metric RF LSTM 

Only 

DQ

N 

SVR LSTM 

– RL 

Accuracy 93.2

% 

95.6% 94.8

% 

91.5

% 

98.3% 

Recall 92.1

% 

94.9% 93.7

% 

90.4

% 

98.1% 

F1-Score 92.4

% 

95.0% 93.9

% 

90.6

% 

98.0% 

RMSE 4.5 3.2 3.8 5.1 1.9 

R² 0.94 0.96 0.95 0.92 0.99 

Energy 

Efficienc

y 

90.7

% 

92.8% 91.4

% 

88.3

% 

97.6% 

 

Fig.2. R² Comparison Across Models  

Table 2 displays the performance metrics of the 

proposed LSTM–RL model, which attained the 

highest evaluation scores across all criteria. Table 3 

compares the proposed framework with conventional 

baseline models, confirming its enhanced accuracy, 
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reduced RMSE, and greater energy efficiency, 

thereby illustrating its robustness and scalability for 

adaptive energy distribution in a solar-wind hybrid 

EV system. The Line plot Graph in Figure 2 illustrates 

R² values for five models, highlights comparative 

performance. 

 

Fig.3. Recall Comparison Across Models 

The Bubble Graph in Figure 3 illustrates Recall 

values, with bubble size according to each recall 

score. It highlights the comparative recall strength in 

an organised and visually appealing manner. The Line 

Plot Graph in Figure 4 illustrates F1-scores, 

demonstrating the distribution of predictive 

equilibrium between precision and recall. 

 

Fig.4. F1 Score Comparison Across Models 

3. Ablation Studies and Robustness Analysis: 

An ablation study was performed to evaluate the 

impact of each component—LSTM forecasting and 

RL optimization—on the system's overall 

performance. The removal of either module resulted 

in significant reductions in accuracy and efficiency, 

hence confirming their synergistic significance. The 

hybrid model consistently outperformed standalone 

models under variable input settings, attaining 98.3% 

accuracy and 97.6% energy efficiency. The 

robustness investigation confirmed that the model-

maintained stability under various climatic 

fluctuations and noise levels, confirming its 

suitability for real-time energy distribution. This 

demonstrates the durability and greater predictive 

control of the proposed LSTM–RL architecture 

compared to standard baseline approaches. 

 

Fig.5. Energy Comparison Across Models 

The Candle Stick Graph in Figure 5 illustrates 

Energy Efficiency across models utilising synthetic 

open-high-low-close data to represent variation. 

4. Discussion on System Efficiency and Scalability: 

The suggested LSTM–RL framework 

demonstrates remarkable efficiency and scalability in 

regulating energy flow within solar–wind hybrid EV 

systems. The approach enhances energy allocation 

efficiency through the integration of predictive 

learning and adaptive control, while maintaining 

minimal computing overhead. Performance data 

demonstrate a 98.3% accuracy and 97.6% energy 

efficiency, significantly above conventional 

algorithms. Scalability studies demonstrate that the 

framework sustains uniform performance with 

escalating data volumes and extended simulation 

durations. Its modular architecture facilitates 

effortless integration into extensive renewable energy 

grids, intelligent electric vehicle networks, and real-

time Internet of Things infrastructures, demonstrating 
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its capacity for sustainable, data-informed energy 

management solutions. 

5. Insights and Practical Implications: 

According to the study, the suggested LSTM–RL 

framework outperforms traditional baseline models in 

terms of accuracy, energy efficiency, and 

dependability. The technology minimises operating 

costs and unfulfilled demand by ensuring optimal 

energy distribution for solar-wind hybrid EV 

networks through the combination of adaptive 

decision-making and predictive forecasting. Scalable, 

real-time energy management is supported by the 

framework's modular design, which enables smooth 

integration with current renewable infrastructure and 

IoT-enabled EV charging stations. According to 

findings, proactive forecasting greatly improves 

decision-making, and reinforcement learning 

guarantees flexibility in a variety of environmental 

circumstances. As a result, the method is well suited 

for real-world implementation in smart grids and 

sustainable transportation ecosystems. 

CONCLUSION 

The study introduces a Hybrid LSTM–

Reinforcement Learning framework for flexible 

energy distribution in solar–wind hybrid electric 

vehicle systems, resulting in notable enhancements in 

accuracy of forecasting and energy allocation 

efficiency. Significant contributions include the 

integration of predictive forecasting with adaptive 

decision-making, facilitating dynamic energy 

management and improving the utilisation of 

renewable resources. The immediate benefits 

underscore the system's capability for real-time 

implementation in smart grids and electric vehicle 

networks, minimising operational expenses and 

guaranteeing dependable energy distribution. Limits 

include reliance on historical information and 

environmental variability, whereas future research 

might explore multi-agent reinforcement learning, 

integration with electricity networks, and including of 

additional renewable sources, promoting scalable, 

sustainable, and intelligent energy ecosystems. 
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