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Abstract — The prediction of traffic accidents continues to provide a considerable problem, primarily because present
models inadequately capture and integrate the dynamic condition of drivers with immediate environmental risks, resulting in
weak severity predictions. This research proposes a Hybrid Risk Assessment Framework aimed at predicting accident severity
through the integration of diverse data streams, including real-time driver physiological signals and current road conditions.
The proposed system utilises a stacked ensemble architecture, incorporating a Bi-LSTM to model the temporal aspects of
internal risk (e.g., Heart Rate Variability, RMSSD) and an XGBoost classifier for static exterior risk features (e.g., Road Surface,
TIT). The forecasts from these specialised base-learners are integrated by a Meta-Classifier, allowing the framework to
understand complex non-linear interactions. The findings indicate the enhanced effectiveness of the hybrid method, with a final
accuracy of 92.1% and a macro-averaged F1-Score of 0.915. This performance markedly exceeds single-modal baseline models
(e.g., XGBoost bhaseline F1-Score 0.829), validating the concept that decision-level data fusion is crucial for accurate accident
severity prediction and facilitating the development of highly reliable proactive safety systems.

Keywords— Hybrid Risk Assessment Framework, Accident Severity Prediction, Physiological Signals, Road Conditions,
Stacked Ensemble, Time Integrated Time-to-Collision (TIT), Intelligent Transportation Systems (ITS), ADAS.

deliver precise, multi-class predictions of possible
accident severity, thus improving road safety
measures. This review(l) provides data-driven
models for the severity and frequency of accidents. It
does not incorporate a hybrid model that integrates
real-time physiological signals with accident causes,
a vital component addressed by our approach to
improve the prediction of injury causation and
severity for occupants and vulnerable road users. This
paper (2) examines the evolution of Al/ML towards
data-driven  road  safety, highlighting the
incorporation of traffic and environmental data. It
ignores the essential, real-time assessment of the
driver's internal  physiological condition, a
fundamental element of our hybrid model required for
precise, proactive severity forecasting at the pre-crash
phase. This research (3) examines the efficacy of data
integration in 191 machine learning studies focused

INTRODUCTION

Road traffic accidents represent a worldwide
concern, requiring a transition from reactive post-
incident analysis to proactive risk assessment.
Conventional accident prediction models typically
emphasise historical and static factors, overlooking
the real-time interaction between a driver's immediate
physiological condition and dynamic environmental
circumstances. This significant oversight restricts the
capacity of current systems to precisely predict
accident severity prior to impact. This study presents
an innovative Hybrid Risk Assessment Framework
aimed at addressing this gap. The framework
incorporates elements based on driver physiological
signals (internal risks, such as tiredness and stress)
and real-time driving circumstances (external risks).
The main goal is to create a strong, interpretable
model that integrates these diverse data streams to
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on accident prediction. Our research employs this
discovery while specifically addressing the gap in
integrating real-time driver physiological information
with external risk factors to attain 92.1% accuracy in
severity prediction. This paper (4) addresses dataset
imbalance with SMOTE/ADASYN to enhance RTA
severity prediction utilising models such as RF and
KNN. In correcting imbalance, it leaves out the origin
of predictive characteristics, failing to incorporate the
multi-modal  fusion of  physiological and
environmental data that is fundamental to our
improved Hybrid SE (F1-Score 0.915).

RELATED WORKS

This study reviews literature on the assessment of
driver ~ mental workload (MWL) through
cardiovascular and respiratory sensors (5). It focusses
specifically on MWL. Our methodology integrates
these physiological inputs with external road
circumstances (e.g., TIT) to directly forecast accident
severity, a superior safety outcome. The ANGELS v2
system provides an economical embedded solution
for monitoring driver PPG and EDA, with great
dependability with a mean absolute error of 1.19
BPM. The emphasis is on hardware design (6). Our
framework employs trustworthy PPG/EDA data as
input for a Stacked Ensemble model to forecast the
ultimate severity of a collision, rather than simply the
physiological state. This research specifically
evaluates psychophysiological metrics (e.g., EEG,
HRV, skin conductance) for the assessment of
cognitive states in drivers. It lacks the presence of a
predictive model (7). This study incorporates various
metrics (e.g., HRV) into a hybrid predictive
framework (Bi-LSTM + XGBoost) to classify
severity outcomes in real-time. This study presents a
multimodal system that employs an intelligent
cushion equipped with MEMS and optical sensors,
alongside CNN-LSTM (8), for driver monitoring,
resulting in improved accuracy. It does not include
pre-crash surrogate metrics (such as TIT) and external
road conditions, which the hybrid model use for direct
prediction of accident severity. This research
examines RCM technologies from 2017 to 2022 that
utilise smart sensors and Al for assessing pavement
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distress(9). The emphasis is on infrastructure
maintenance. The research fails to integrate the
driver's physiological state, an essential factor
included in the hybrid framework for predicting
accident severity. This article (10,11) examines
sources of road accident data, analytical
methodologies, and risk variables associated with
collisions. The emphasis is on macro-level statistical
analysis. The study has weaknesses in a real-time
hybrid system that integrates physiological sensor
data with dynamic road conditions to facilitate pre-
crash severity prediction. This research develops an
index method to examine the causal factors of
numerous road traffic accidents in Yizheng City (12),
identifying human and roadway aspects as dominant.
The findings originate from subjective and historical
data. The method employs real-time human
(RMSSD) and road (TIT) variables for dynamic
severity prediction, surpassing static weights. This
case study’s (13,14) using PCI/IRI to assess road
conditions in Indonesia, indicating that the remaining
service life is 10.7%. This examination pertains to
long-term strategic planning. The hybrid architecture
employs real-time road surface conditions as a feature
for quick risk evaluation and accident severity
forecasting. This article examines cutting-edge
machine learning techniques utilising various sensor
data (10T, UAV) and data fusion for the identification
of plant diseases (15). The research doesn't have of
relevance to vehicular safety. The approach employs
similar heterogeneous data fusion concepts to
integrate physiological and road data for predicting
accident severity. This study introduces the SCGA
deep-learning model for sensor-fusion detection of
basketball shooting positions, attaining an average
precision of 98.79% in intra-test evaluations (16).
This is a single-domain application. The hybrid
architecture employs the identical sensor-fusion
approach and deep learning techniques (Bi-LSTM,
XGBoost) to forecast the multi-class outcomes of
accident severity. This study presents a CNN-LSTM
hybrid model for traffic congestion management and
region-specific traffic flow forecasting, attaining an
accuracy of 92.3% and a root mean square error
(RMSE) of 49 (17). The emphasis is on traffic flow.
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The framework integratess CNN-LSTM fusion
concepts to classify accident severity based on
physiological and road condition data. This study
integrates 72 elements from bearing vibration data
through dimensionality reduction to enhance defect
diagnosis and Remaining Useful Life prediction with
LSTM (18,19). The emphasis is on mechanical
forecasting. The hybrid framework utilises the feature
fusion idea for HRV and TIT to forecast a safety
outcome (severity) rather than machine health.

The current literature mostly emphasises
individual facets of safety, examining driver mental
workload (MWL) with individual physiological
sensors or evaluating road condition assessment and
traffic flow by environmental data. A significant
research gap noted is the absence of models that can
simultaneously synthesise these diverse, real-time
data sources to forecast accident consequences. The
lack of a comprehensive, integrated structure affects
the effectiveness of preventive safety measures. The
necessity for a system that surpasses single-modal
analysis drives the suggested research. The innovative
contribution is the Hybrid Risk Assessment
Framework, which employs decision-level fusion
through a stacked ensemble. This architecture
incorporates specialised base learners: a Bi-LSTM for
time-series physiological features (internal risk) and
XGBoost for exterior road and kinematic information
(external risk) to comprehend the complex
relationship between driver status and environmental
hazards. This integration produces a thorough and
precise model for predicting multi-class accident
severity, attaining a confirmed accuracy of 92.1%.

METHODLOGY

The Hybrid Risk Assessment Framework is a
complex, layered approach designed to forecast
accident severity by integrating internal and external
risk elements. The architecture comprises two
separate base learners: a Bidirectional Long Short-
Term Memory (Bi-LSTM) network that analyses
time-series physiological data (e.g., RMSSD) to
model driver fatigue and cognitive load, and an
Extreme Gradient Boosting (XGBoost) classifier that
processes static and tabular environmental features
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(e.g., Road Surface, Visibility, TIT) to evaluate
immediate external hazard levels. The outputs (class
probabilities) from both Bi-LSTM and XGBoost are
then combined with chosen raw features to create an
enhanced meta-input vector. The vector is input into
a final Multi-Layer Perceptron (MLP), serving as the
Meta-Classifier in a stacked ensemble approach. This
decision-level fusion allows the framework to
methodically assess the cumulative impact of an
impaired driving state alongside dangerous external
conditions to produce a precise, high-fidelity
categorisation of accident severity. The flowchart of
the suggested methodology is illustrated in Figure 1.

Data Input:
Physiological Signals & Environmental Conditions

l

Data Preprocessing:
Normalization & Encoding

:

Feature Engineering:
Extract HRV, TIT, CPI

AN

Bi-LSTM Model: XGBoost Model:
Internal Risk Estimation External Risk Estimation

N

Stacked Ensemble Fusion:
MLP Meta-Classifier

l

Model Evaluation:
Accuracy, Precision, Recall, F1-Score

:

Final Output:
Accident Severity Prediction

Fig.1 Flowchart



Dr. R. V. S. Praveen / Journal of Advances in Management, Engineering and
Science (JAMES), 2025, 1(7)

Data Acquisition and Preprocessing:

This research utilises two principal datasets from
the Kaggle platform to develop and evaluate the
Hybrid Risk Assessment Framework. The Kaggle
Driver Physiological Dataset offers internal state
parameters, including real-time biometric
measurements, including Heart Rate Variability
(HRV) along with potential Electroencephalography
(EEG) or Eye Movement data. The Kaggle Road
Condition Dataset provides external context,
encompassing weather variables (e.g., temperature,
precipitation, visibility), road type, and possibly
historical accident severity labels associated with
specific geospatial and temporal markers. The
integration of these two disparate data is essential for
training a model that can associate an impaired driver
state with harmful environmental variables to
precisely forecast collision severity. The predictive
goal variable, accident severity, is generally a multi-
class result (e.g., Minor, Moderate, Severe, Fatal)
obtained from the road condition dataset.

Mathematical Description of Data:

The combined dataset D includes N examples, with

each instance i characterised by a feature vector x;

and a severity label y;.

o Combined Dataset Representation (1):
D={(x,y)li=12,..,N} €))

where x; is the feature vector for instance i, and y; €
{1, 2, ..., K} denotes the accident severity class, with
K indicating the total number of severity classes.

e Feature Vector Composition (Hybrid Input):

The feature vector is partitioned into two main
components as (2):

x = [ 2]

(2)
xP"* is the vector representing physiological
characteristics, while x{™" is the vector representing

environmental and road condition characteristics.

o Accident Severity Label (Classification Target):
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The predicted outcome is a discrete severity level as
Q):
y; = Severity € {Minor, Moderate, Severe, Fatal} (3)

Data Preprocessing and Feature Engineering

Data preprocessing is an essential initial phase to
prepare the many different inputs from the two
Kaggle datasets for the hybrid framework. The
procedure commences with the standardisation of
diverse data kinds. Categorical variables from the
Kaggle Road Condition Dataset, including weather
type (e.g., fog, rain) and road surface condition, are
transformed into a numerical format with One-Hot
Encoding to avoid incorrect ordinal connections.
meanwhile, all continuous numerical variables, such
as temperature and visual distance, are standardised
by Min-Max Normalisation. This normalisation
guarantees that features with greater numerical ranges
do not significantly influence distance calculations or
weighting in predictive models, ensuring equal
feature impact during the training of the final severity
prediction model.

1. Data Preprocessing
¢ Min-Max Normalization (for numerical features)
(4):
o f rrlln(f ) @)
max(f) — min(f)
e One-Hot Encoding (for a categorical feature with
unique categories) (5):

The category value is transformed into a binary
vector:

. Zc] (5)
Where in (5), zx = 1 if ¢; matches to the k-th
category, and O otherwise.

z = [zy,2,, ...

Feature extraction is an essential step in the
preparation of heterogeneous data for the hybrid risk
assessment framework. This technique converts raw
sensor data and categorical inputs into a brief and
significant array of numerical properties, thereby
improving the models' predictive capability.
Physiological data are analysed to extract time-
domain Heart Rate Variability (HRV) measurements,
including RMSSD and SDNN, over sliding windows
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to assess driver cognitive load and weariness. Road
conditions and vehicle dynamics utilise metrics such
as the Time Integrated Time-to-Collision (TIT) as a
sophisticated surrogate indicator of oncoming crash
risk. This stage significantly decreases data
dimensionality while preserving the most significant
predictive patterns essential for precise severity
categorisation.

2. Physiological Feature

Domain HRV)

Engineering  (Time-

Let NN k denote the k-th normal-to-normal inter-beat
interval (measured in seconds)

e Standard Deviation of NN intervals (SDNN) (6):
This reflects overall HRV.

M
1 -
= |— — 2
SDNN M — 1k_El(NNk NN) (6)

where M denotes the guantity of intervals within the
statistical window, and NN represents the average of
all NN intervals.

e Root Mean Square of Successive Differences
(RMSSD) (7):

Primarily  reflects  vagal-mediated  changes
(parasympathetic activity, key for fatigue/stress).

M-1
1
RMSSD = m Z (NNk+1 - NNR)Z (7)
k=1

3. Kinematic Feature Engineering (Surrogate
Safety Measures)
e Time-to-Collision (TTC) (8):

The duration necessary for a vehicle to impact an
earlier vehicle, assuming both maintain their current
pace and direction.

Ax(t)
Av(t)

TTC(t) = )

where Ax(t) represents the distance between vehicles
and Av(t) is the relative velocity.
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Model Development: Severity Prediction
1. Base-Learner Configuration:

The framework utilises specialised base learners
designed for the specific attributes of the input data
streams. The temporal and sequential characteristics
of physiological signals from the Kaggle Driver
Physiological Dataset are optimally represented by a
Bidirectional Long Short-Term Memory (Bi-LSTM)
network. Bi-LSTM effectively captures long-range
dependencies and patterns in time-series data,
accurately assessing driver state risk. The static and
tabular characteristics of the environmental and road
condition features from the Kaggle Road Condition
Dataset are addressed by an Extreme Gradient
Boosting (XGBoost) classifier. XGBoost delivers
strong performance and fundamental feature
importance assessment for external risk variables.

e Bi-LSTM Hidden State Calculation (Simplified):

The hidden state h; at time t is a function of the
input x;, the previous hidden state h;_,, and the cell

state ¢, employing forward propagation (h_{) and
backward (h_t) passes (9-11).

he = [Res e 9
h; = LSTM (x;, he—1) (10)
hy = LSTM (x;, he—1) (11)

e XGBoost Prediction Function (12):

The ultimate forecast y; is the total of predictions
from K additive tree functions f:

K
Vi = Z fx (xi)
k=1

fr €F

Where F is the space of regression trees.

(12)

e XGBoost Objective Function (Simplified):

The objective function L® (13) at iteration
t minimises the loss function | while penalising the
complexity Q of the tree f; (14).
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n

1O = 1 (3

i=1

+AGD)+0(F) (13)

) =T+ 52w 1P 14

2. The Fusion Strategy

A Stacked Ensemble methodology is employed as
the primary fusion mechanism, leveraging a Meta-
Classifier to integrate the predictions of basic
learners. The outputs (class probabilities) from the Bi-
LSTM and XGBoost models are combined with the
original environmental and kinematic features to
create an enhanced feature set. The expanded dataset
functions as the input for the Meta-Classifier, which
is designated as a Multi-Layer Perceptron (MLP).
This decision-level fusion allows the framework to
understand the complex non-linear link between the
anticipated internal risk (driver state) and external risk
(road condition) to determine a final, comprehensive
accident severity level.

e Base-Learner Output Generation:

The BIi-LSTM and XGBoost models generate
prediction probability vectors Pgi..stm (15) and Pxcs
(16), respectively, for K severity classes:

Dpi-LsTm = Softmax (Bi - LSTM(xphys)) €ERK (15)

Pxcs = softmax(XGBoost(xny)) € R (16)
e Augmented Feature Vector (Stacking):

The meta-input X™et% is generated by concatenating
the probability vectors of the basis learners with the
environmental feature vector X™ (17):

meta _— env D +2K
X = [X®™, pgi—Lstm, Pxcpl € R7enw

Where D,,, is the
environmental features.

17)

dimensionality of the

o Meta-Classifier (MLP) Final Prediction (18-19):

The final severity prediction y; is generated by the

MLP using the meta-input:
y= MLP (Xmetq) (18)

MLP(x) = g,(W,g;-1(... g (Wix + by) ..) + b)) (19)
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Model Training and Optimization

Model training includes the minimisation of a
classification loss function, such as Categorical
Cross-Entropy, which is particularly crucial for multi-
class severity prediction. Optimisation is executed
through an algorithm like Adam. Hyperparameter
tuning is performed by a systematic search method,
such as Grid Search or Randomised Search, to
identify the ideal configuration for the XGBoost, Bi-
LSTM, and MLP components. The optimised key
parameters encompass the learning rate, the quantity
of hidden layers in the Bi-LSTM, and the
regularisation terms (A) in XGBoost. This careful
method guarantees that the hybrid framework attains
optimal prediction performance and generalisation
capabilities.

Mathematical Formulas  for and

Optimization

Training

e Categorical Cross-Entropy Loss (20):

Used as the cost function for training classification
models, particularly the final MLP and the base
learners:

1 N K A
Lece = — N Z Z virlog(Paw)  (20)
i=1k=1
Where y; . is 1 if instance i is classified as belonging
to class k (one-hot encoded ground truth) and O
otherwise, and P(;x) represents the anticipated
probability for class k.

e Adam Optimization (Update Rule - Simplified):

The parameters 6 t are modified according to the
gradient g t, employing adaptive learning rates
obtained from the first moment m t (mean) and the
second moment v t (variance) estimates (21):

(21)

n .
Orr1 =6 — — M
VUt €
Where 1 denotes the step size (learning rate), 7, and
U, represents the bias-corrected moment estimates,
while e denotes a minimal constant.

e L2 Regularization Term (Weight Decay) (22):



Dr. R. V. S. Praveen / Journal of Advances in Management, Engineering and
Science (JAMES), 2025, 1(7)

Integrated into the loss function during training to
prevent overfitting, especially in the deep learning
components (Bi-LSTM, MLP):

Liotar = Lece + 4 Z Il w2 (22)
WEeWeights

Where is the regularization hyperparameter.

Simulation Environment and Implementation Details:

The Hybrid Risk Assessment Framework is
executed and validated within a regulated yet
authentic simulation environment intended for
recreation of real driving situations and data
collection. A high-fidelity driving simulator is
employed to simultaneously gather various multi-
modal data streams under controlled conditions. This
environment facilitates the systematic production of
driver states, including fatigue and elevated cognitive
load, as well as the simulation of diverse road
conditions, such as reduced visibility and slippery
surfaces.

The framework's execution depends on a modular
architecture utilising the Python programming
language and its specialised libraries. TensorFlow or
PyTorch functions as the principal deep learning
framework for the configuration and training of the
Bi-LSTM base learner and the MLP meta-classifier.
The XGBoost base learner is implemented utilising
the Scikit-learn and XGBoost libraries. Pandas and
NumPy facilitate data  administration and
manipulation, ensuring efficient preprocessing and
the production of feature vectors. The system is
engineered for prospective real-time use, with the
base learners concurrently processing their respective
feature sets prior to transmitting their predictions to
the final fusion layer. This guarantees low-latency
risk evaluation, essential for delivering prompt
intervention  notifications. The computational
platform is a conventional workstation outfitted with
a high-performance GPU to enhance the training and
inference  of deep learning models. The
comprehensive implementation seeks transparency
and replicability, guaranteeing that the outcomes are
robust and verifiable within the community.

RESULTS AND DISCUSSION
1. RL Agent Performance and Training Results:

Table.1 Output of Training Dataset (Predicted vs.
Actual Severity)

Instance Input: Input: Actual Predicted
ID RMSSD TIT Severity Severity

1001 35.2ms 0.005s Minor Minor

1002 12.8 ms 1.550 s Severe/ Severe/Fatal
Fatal

1003 28.5ms 0.850s | Moderate Moderate
1004 41.1ms 0.001s Minor Minor

1005 15.1ms 1.100s Severe/ Moderate
Fatal

1006 21.9ms 1.950s = Moderate Moderate

The Hybrid Risk Assessment Framework
demonstrated enhanced predictive performance on
the test set, validating its efficacy in forecasting
accident severity. The final Stacked Ensemble
Classifier produced a macro-average F1-Score of
0.915 and an Accuracy of 92.1%. The elevated Recall
of 0.908 for the "Severe/Fatal” class demonstrates the
framework's efficacy in detecting the most significant
high-risk incidents, an essential criterion for safety
systems. The strong performance validates that the
decision-level integration of internal (Bi-LSTM on
physiological data) and external (XGBoost on road
data) risk factors effectively captures the complex
interactions resulting in diverse severity outcomes.
Table 1 shows framework's predictions on the training
dataset showcases the high evaluation metrics
achieved.

2. Comparative Analysis with Baseline Methods:

Table 2: Proposed System Evaluation Metrics

Performance Metric Value
Accuracy 0.921
Precision (Macro-Avg) 0.917
Recall (Macro-Avg) 0.908
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F1-Score (Macro-Avg) 0.915

AUC-ROC (Weighted) 0.965

Table.3 Comparative Analysis with Baseline Models

Model Name Accurac = Precisio | Recall F1-
y n (Macro Score
(Macro- = -Avg) | (Macro
Avg) -Avg)
Hybrid Stacked 0.921 0.917 0.908 0.915
Ensemble
(Proposed)
Single-Modal 0.845 0.838 0.821 0.829
XGBoost
(Environmental
)
Single-Modal 0.772 0.755 0.760 0.757
Bi-LSTM

(Physiological)

For comparison, two suitable and often cited baseline
models were chosen: a Single-Modal Bi-LSTM
(concentrating only on physiological time-series data)
and a Single-Modal XGBoost (focussing exclusively
on static/environmental variables). The suggested
Hybrid Stacked Ensemble Framework significantly
surpasses single-modal baselines on all critical
measures, confirming the effectiveness of the data
fusion technique. The comparison results indicate that
integrating the predictive capabilities of both driver
state and road circumstances through the stacking
approach provides a more thorough and precise risk
assessment. This table 2 highlights the significant
performance enhancements of the proposed hybrid
system in comparison to the single-modal baseline
approaches. This Table 3 underscores the substantial
performance improvements of the proposed hybrid
system compared to the single-modal baseline
methods. Table 3 clearly demonstrates the efficacy of
the fusion methodology; the proposed Hybrid Stacked
Ensemble attained an enhancement of more than 7
percentage points in F1-Score relative to the robust
XGBoost baseline and over 15 percentage points
compared to the Bi-LSTM baseline. This mismatch
underscores the need of employing a hybrid model to
precisely ~ forecast  accident  severity by
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comprehensively evaluating both internal (driver) and
external (environmental) risk factors.

3. Feature Importance and Interpretability

The framework's interpretability was evaluated
using SHapley Additive exPlanations (SHAP),
offering extensive understanding into feature impact.
Time Integrated Time-to-Collision (TIT) shown to be
the most significant element, confirming the
importance of incorporating Kkinematic surrogate
safety measures.

Most Influential Factors in Accident Severity Prediction (Hybrid Framework)

T [Kinematic)

RMSSD (Physiological)

Road Surface Condition

Feature

Visibility Distance

SONN (Physiological)

Tirme of Day (Env) 4 0.01

00 01 02 03 04
Mean Absolute SHAP Value (Feature Importance)

Fig.2. Most Influential Factors in Accident Severity
Prediction

The Root Mean Square of Successive Differences
(RMSSD) resulted as the primary predictor among
physiological signals, confirming that reduced Heart
Rate Variability, indicative of exhaustion or stress, is
a significant factor in determining severity.
Environmental parameters such as road surface
condition and visibility distance exhibited significant
importance. This research confirms that the model is
making substantiated conclusions based on the
fundamental hybrid risk elements. This Graph in
Figure 2 illustrates the relative significance of a
selection of features obtained from a projected SHAP
analysis of the trained Hybrid Stacked Ensemble
model, utilising the main features mentioned in
previous tasks.
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- Accuracy Comparison for Accident Severity Prediction
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Fig.3. Accuracy Comparison Across Models

This horizontal bar chart in Figure 3 illustrates the
Hybrid SE with the best accuracy of 0.921. The
models are clearly ranked, demonstrating that the
hybrid fusion technique is preferable for generalised
severity classification.

" Model Comparison: Precision Performance
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Hybrid SE

Fig.4. Model Comparison: Precision Performance

The line figure 4, illustrates the substantial
increase in Precision (0.917) attained by the Hybrid
SE compared to the single-modal models, indicating
enhanced dependability in reducing false-positive risk
predictions. The visualisation of Figure 5 underscores
the Hybrid SE's elevated Recall (0.908), indicating its
efficacy in identifying over 90% of all genuine major
incidents, which is essential for vital proactive safety
systems.
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Hybrid SE Recall: 0.908 / 1.000

Remaining (Ideal)

Hybrid SE Recall (0.908)

Fig.5. Recall score of the Models
Model Comparison: F1-Score (Balanced Performance)

Hybrid SE

Bi-LSTM (F Bbost (Env)

Fig.5. Model Comparison: F1-Score (Balanced
Performance)

This radar chart in Figure 5 illustrates the
balanced performance of the F1-Score across all three
models. The larger orange region (0.915)
demonstrates the Hybrid SE's notably superior and
dependable prediction capabilities.

4. Discussion of Findings and Practical Implications:

The framework's exceptional metrics (F1-Score
0.915, Accuracy 92.1%) support the hybrid approach,
surpassing leading single-modal systems by
effectively combining the driver's internal state with
external threats. The strong efficacy in categorising
the "Severe/Fatal" class has important implications
for Advanced Driver-Assistance Systems (ADAS),
facilitating predictive alerts and automatic responses
just before a critical incident. A primary constraint is
the dependence on precisely calibrated physiological
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sensors and the necessity for a standardised,
generalisable data fusion methodology. Further
studies should concentrate on real-time edge
deployment and evaluating the model's performance
sensitivity to different levels of sensor noise and data
dropout.

CONCLUSION

The initiative to create a safer driving
environment continues with the Hybrid Risk
Assessment Framework. This research effectively
integrated the complex domains of human physiology
and exterior driving risks, culminating in a significant
achievement: a very precise predictive model for
accident severity. The principal discovery is that the
integration of internal risk (assessed by metrics such
as RMSSD) and external risk (evaluated using TIT
and road conditions) is crucial, resulting in a system
with an accuracy of 92.1%. This advancement
immediately enhances intelligent transportation
systems by facilitating proactive ADAS interventions,
transitioning safety from reactive responses to real-
time predictions. Although sensor robustness is a
present restriction, the architecture facilitates further
investigation into edge computing implementation
and the flexible adjustment of risk levels across
various geographic areas. The discovery ultimately
paves the way for zero-fatality transportation.
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