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Abstract – The prediction of traffic accidents continues to provide a considerable problem, primarily because present 

models inadequately capture and integrate the dynamic condition of drivers with immediate environmental risks, resulting in 

weak severity predictions. This research proposes a Hybrid Risk Assessment Framework aimed at predicting accident severity 

through the integration of diverse data streams, including real-time driver physiological signals and current road conditions. 

The proposed system utilises a stacked ensemble architecture, incorporating a Bi-LSTM to model the temporal aspects of 

internal risk (e.g., Heart Rate Variability, RMSSD) and an XGBoost classifier for static exterior risk features (e.g., Road Surface, 

TIT). The forecasts from these specialised base-learners are integrated by a Meta-Classifier, allowing the framework to 

understand complex non-linear interactions. The findings indicate the enhanced effectiveness of the hybrid method, with a final 

accuracy of 92.1% and a macro-averaged F1-Score of 0.915. This performance markedly exceeds single-modal baseline models 

(e.g., XGBoost baseline F1-Score 0.829), validating the concept that decision-level data fusion is crucial for accurate accident 

severity prediction and facilitating the development of highly reliable proactive safety systems. 

 

Keywords— Hybrid Risk Assessment Framework, Accident Severity Prediction, Physiological Signals, Road Conditions, 
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INTRODUCTION 

Road traffic accidents represent a worldwide 

concern, requiring a transition from reactive post-

incident analysis to proactive risk assessment. 

Conventional accident prediction models typically 

emphasise historical and static factors, overlooking 

the real-time interaction between a driver's immediate 

physiological condition and dynamic environmental 

circumstances. This significant oversight restricts the 

capacity of current systems to precisely predict 

accident severity prior to impact. This study presents 

an innovative Hybrid Risk Assessment Framework 

aimed at addressing this gap. The framework 

incorporates elements based on driver physiological 

signals (internal risks, such as tiredness and stress) 

and real-time driving circumstances (external risks). 

The main goal is to create a strong, interpretable 

model that integrates these diverse data streams to 

deliver precise, multi-class predictions of possible 

accident severity, thus improving road safety 

measures. This review(1) provides data-driven 

models for the severity and frequency of accidents. It 

does not incorporate a hybrid model that integrates 

real-time physiological signals with accident causes, 

a vital component addressed by our approach to 

improve the prediction of injury causation and 

severity for occupants and vulnerable road users. This 

paper (2) examines the evolution of AI/ML towards 

data-driven road safety, highlighting the 

incorporation of traffic and environmental data. It 

ignores the essential, real-time assessment of the 

driver's internal physiological condition, a 

fundamental element of our hybrid model required for 

precise, proactive severity forecasting at the pre-crash 

phase. This research (3) examines the efficacy of data 

integration in 191 machine learning studies focused 
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on accident prediction. Our research employs this 

discovery while specifically addressing the gap in 

integrating real-time driver physiological information 

with external risk factors to attain 92.1% accuracy in 

severity prediction. This paper (4) addresses dataset 

imbalance with SMOTE/ADASYN to enhance RTA 

severity prediction utilising models such as RF and 

KNN. In correcting imbalance, it leaves out the origin 

of predictive characteristics, failing to incorporate the 

multi-modal fusion of physiological and 

environmental data that is fundamental to our 

improved Hybrid SE (F1-Score 0.915).  

RELATED WORKS 

This study reviews literature on the assessment of 

driver mental workload (MWL) through 

cardiovascular and respiratory sensors (5). It focusses 

specifically on MWL. Our methodology integrates 

these physiological inputs with external road 

circumstances (e.g., TIT) to directly forecast accident 

severity, a superior safety outcome. The ANGELS v2 

system provides an economical embedded solution 

for monitoring driver PPG and EDA, with great 

dependability with a mean absolute error of 1.19 

BPM. The emphasis is on hardware design (6). Our 

framework employs trustworthy PPG/EDA data as 

input for a Stacked Ensemble model to forecast the 

ultimate severity of a collision, rather than simply the 

physiological state. This research specifically 

evaluates psychophysiological metrics (e.g., EEG, 

HRV, skin conductance) for the assessment of 

cognitive states in drivers. It lacks the presence of a 

predictive model (7). This study incorporates various 

metrics (e.g., HRV) into a hybrid predictive 

framework (Bi-LSTM + XGBoost) to classify 

severity outcomes in real-time. This study presents a 

multimodal system that employs an intelligent 

cushion equipped with MEMS and optical sensors, 

alongside CNN-LSTM (8), for driver monitoring, 

resulting in improved accuracy. It does not include 

pre-crash surrogate metrics (such as TIT) and external 

road conditions, which the hybrid model use for direct 

prediction of accident severity. This research 

examines RCM technologies from 2017 to 2022 that 

utilise smart sensors and AI for assessing pavement 

distress(9). The emphasis is on infrastructure 

maintenance. The research fails to integrate the 

driver's physiological state, an essential factor 

included in the hybrid framework for predicting 

accident severity. This article (10,11) examines 

sources of road accident data, analytical 

methodologies, and risk variables associated with 

collisions. The emphasis is on macro-level statistical 

analysis. The study has weaknesses in a real-time 

hybrid system that integrates physiological sensor 

data with dynamic road conditions to facilitate pre-

crash severity prediction. This research develops an 

index method to examine the causal factors of 

numerous road traffic accidents in Yizheng City (12), 

identifying human and roadway aspects as dominant. 

The findings originate from subjective and historical 

data. The method employs real-time human 

(RMSSD) and road (TIT) variables for dynamic 

severity prediction, surpassing static weights. This 

case study’s (13,14) using PCI/IRI to assess road 

conditions in Indonesia, indicating that the remaining 

service life is 10.7%. This examination pertains to 

long-term strategic planning. The hybrid architecture 

employs real-time road surface conditions as a feature 

for quick risk evaluation and accident severity 

forecasting. This article examines cutting-edge 

machine learning techniques utilising various sensor 

data (IoT, UAV) and data fusion for the identification 

of plant diseases (15). The research doesn't have of 

relevance to vehicular safety. The approach employs 

similar heterogeneous data fusion concepts to 

integrate physiological and road data for predicting 

accident severity. This study introduces the SCGA 

deep-learning model for sensor-fusion detection of 

basketball shooting positions, attaining an average 

precision of 98.79% in intra-test evaluations (16). 

This is a single-domain application. The hybrid 

architecture employs the identical sensor-fusion 

approach and deep learning techniques (Bi-LSTM, 

XGBoost) to forecast the multi-class outcomes of 

accident severity. This study presents a CNN-LSTM 

hybrid model for traffic congestion management and 

region-specific traffic flow forecasting, attaining an 

accuracy of 92.3% and a root mean square error 

(RMSE) of 49 (17). The emphasis is on traffic flow. 
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The framework integrates CNN-LSTM fusion 

concepts to classify accident severity based on 

physiological and road condition data. This study 

integrates 72 elements from bearing vibration data 

through dimensionality reduction to enhance defect 

diagnosis and Remaining Useful Life prediction with 

LSTM (18,19). The emphasis is on mechanical 

forecasting. The hybrid framework utilises the feature 

fusion idea for HRV and TIT to forecast a safety 

outcome (severity) rather than machine health. 

The current literature mostly emphasises 

individual facets of safety, examining driver mental 

workload (MWL) with individual physiological 

sensors or evaluating road condition assessment and 

traffic flow by environmental data. A significant 

research gap noted is the absence of models that can 

simultaneously synthesise these diverse, real-time 

data sources to forecast accident consequences. The 

lack of a comprehensive, integrated structure affects 

the effectiveness of preventive safety measures. The 

necessity for a system that surpasses single-modal 

analysis drives the suggested research. The innovative 

contribution is the Hybrid Risk Assessment 

Framework, which employs decision-level fusion 

through a stacked ensemble. This architecture 

incorporates specialised base learners: a Bi-LSTM for 

time-series physiological features (internal risk) and 

XGBoost for exterior road and kinematic information 

(external risk) to comprehend the complex 

relationship between driver status and environmental 

hazards. This integration produces a thorough and 

precise model for predicting multi-class accident 

severity, attaining a confirmed accuracy of 92.1%. 

METHODLOGY 

The Hybrid Risk Assessment Framework is a 

complex, layered approach designed to forecast 

accident severity by integrating internal and external 

risk elements. The architecture comprises two 

separate base learners: a Bidirectional Long Short-

Term Memory (Bi-LSTM) network that analyses 

time-series physiological data (e.g., RMSSD) to 

model driver fatigue and cognitive load, and an 

Extreme Gradient Boosting (XGBoost) classifier that 

processes static and tabular environmental features 

(e.g., Road Surface, Visibility, TIT) to evaluate 

immediate external hazard levels. The outputs (class 

probabilities) from both Bi-LSTM and XGBoost are 

then combined with chosen raw features to create an 

enhanced meta-input vector. The vector is input into 

a final Multi-Layer Perceptron (MLP), serving as the 

Meta-Classifier in a stacked ensemble approach. This 

decision-level fusion allows the framework to 

methodically assess the cumulative impact of an 

impaired driving state alongside dangerous external 

conditions to produce a precise, high-fidelity 

categorisation of accident severity. The flowchart of 

the suggested methodology is illustrated in Figure 1. 

 
Fig.1 Flowchart 
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Data Acquisition and Preprocessing: 

This research utilises two principal datasets from 

the Kaggle platform to develop and evaluate the 

Hybrid Risk Assessment Framework. The Kaggle 

Driver Physiological Dataset offers internal state 

parameters, including real-time biometric 

measurements, including Heart Rate Variability 

(HRV) along with potential Electroencephalography 

(EEG) or Eye Movement data. The Kaggle Road 

Condition Dataset provides external context, 

encompassing weather variables (e.g., temperature, 

precipitation, visibility), road type, and possibly 

historical accident severity labels associated with 

specific geospatial and temporal markers. The 

integration of these two disparate data is essential for 

training a model that can associate an impaired driver 

state with harmful environmental variables to 

precisely forecast collision severity. The predictive 

goal variable, accident severity, is generally a multi-

class result (e.g., Minor, Moderate, Severe, Fatal) 

obtained from the road condition dataset. 

Mathematical Description of Data: 

The combined dataset D includes N examples, with 

each instance 𝑖  characterised by a feature vector 𝑥𝑖 

and a severity label 𝑦𝑖. 

 Combined Dataset Representation (1):  

𝐷 = { (𝑥𝑖 , 𝑦𝑖) ∣∣ 𝑖 = 1,2, … ,𝑁 }                  (1) 

where 𝑥𝑖 is the feature vector for instance i, and 𝑦𝑖 ∈ 

{1, 2, …, K} denotes the accident severity class, with 

K indicating the total number of severity classes. 

 Feature Vector Composition (Hybrid Input): 

The feature vector is partitioned into two main 

components as (2): 

𝑥𝑖 = [𝑥𝑖
𝑝ℎ𝑦𝑠 , 𝑥𝑖

𝑒𝑛𝑣]                                         (2) 

𝑥𝑖
𝑝ℎ𝑦𝑠

 is the vector representing physiological 

characteristics, while 𝑥𝑖
𝑒𝑛𝑣  is the vector representing 

environmental and road condition characteristics. 

 Accident Severity Label (Classification Target): 

The predicted outcome is a discrete severity level as 

(3): 

𝑦𝑖 = 𝑆𝑒𝑣𝑒𝑟𝑖𝑡𝑦 ∈ {𝑀𝑖𝑛𝑜𝑟,𝑀𝑜𝑑𝑒𝑟𝑎𝑡𝑒, 𝑆𝑒𝑣𝑒𝑟𝑒, 𝐹𝑎𝑡𝑎𝑙} (3) 

Data Preprocessing and Feature Engineering 

Data preprocessing is an essential initial phase to 

prepare the many different inputs from the two 

Kaggle datasets for the hybrid framework. The 

procedure commences with the standardisation of 

diverse data kinds. Categorical variables from the 

Kaggle Road Condition Dataset, including weather 

type (e.g., fog, rain) and road surface condition, are 

transformed into a numerical format with One-Hot 

Encoding to avoid incorrect ordinal connections. 

meanwhile, all continuous numerical variables, such 

as temperature and visual distance, are standardised 

by Min-Max Normalisation. This normalisation 

guarantees that features with greater numerical ranges 

do not significantly influence distance calculations or 

weighting in predictive models, ensuring equal 

feature impact during the training of the final severity 

prediction model. 

1. Data Preprocessing 

 Min-Max Normalization (for numerical features) 

(4):  

𝑓′ =
𝑓 − min(𝑓)

max(𝑓) − min(𝑓)
                               (4) 

 One-Hot Encoding (for a categorical feature with 

unique categories) (5): 

The category value is transformed into a binary 

vector: 

𝑧 = [𝑧1, 𝑧2, … , 𝑧𝐶]                                          (5) 

Where in (5), 𝑧𝑘 =  1  if 𝑐𝑗  matches to the k-th 

category, and 0 otherwise. 

Feature extraction is an essential step in the 

preparation of heterogeneous data for the hybrid risk 

assessment framework. This technique converts raw 

sensor data and categorical inputs into a brief and 

significant array of numerical properties, thereby 

improving the models' predictive capability. 

Physiological data are analysed to extract time-

domain Heart Rate Variability (HRV) measurements, 

including RMSSD and SDNN, over sliding windows 
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to assess driver cognitive load and weariness. Road 

conditions and vehicle dynamics utilise metrics such 

as the Time Integrated Time-to-Collision (TIT) as a 

sophisticated surrogate indicator of oncoming crash 

risk. This stage significantly decreases data 

dimensionality while preserving the most significant 

predictive patterns essential for precise severity 

categorisation. 

2. Physiological Feature Engineering (Time-

Domain HRV) 

Let NN k denote the k-th normal-to-normal inter-beat 

interval (measured in seconds) 

 Standard Deviation of NN intervals (SDNN) (6):  

This reflects overall HRV. 

𝑆𝐷𝑁𝑁 = √
1

𝑀 − 1
∑(𝑁𝑁𝑘 − 𝑁𝑁̅̅̅̅̅)2
𝑀

𝑘=1

               (6) 

where M denotes the quantity of intervals within the 

statistical window, and 𝑁𝑁̅̅̅̅̅ represents the average of 

all NN intervals. 

 Root Mean Square of Successive Differences 

(RMSSD) (7):  

Primarily reflects vagal-mediated changes 

(parasympathetic activity, key for fatigue/stress). 

𝑅𝑀𝑆𝑆𝐷 = √
1

𝑀 − 1
∑(𝑁𝑁𝑘+1 − 𝑁𝑁𝑘)2
𝑀−1

𝑘=1

    (7) 

3. Kinematic Feature Engineering (Surrogate 

Safety Measures) 

 Time-to-Collision (TTC) (8): 

The duration necessary for a vehicle to impact an 

earlier vehicle, assuming both maintain their current 

pace and direction. 

𝑇𝑇𝐶(𝑡) =
𝛥𝑥(𝑡)

𝛥𝑣(𝑡)
                                                   (8) 

where Δx(t) represents the distance between vehicles 

and Δv(t) is the relative velocity. 

Model Development: Severity Prediction 

1. Base-Learner Configuration: 

The framework utilises specialised base learners 

designed for the specific attributes of the input data 

streams. The temporal and sequential characteristics 

of physiological signals from the Kaggle Driver 

Physiological Dataset are optimally represented by a 

Bidirectional Long Short-Term Memory (Bi-LSTM) 

network. Bi-LSTM effectively captures long-range 

dependencies and patterns in time-series data, 

accurately assessing driver state risk. The static and 

tabular characteristics of the environmental and road 

condition features from the Kaggle Road Condition 

Dataset are addressed by an Extreme Gradient 

Boosting (XGBoost) classifier. XGBoost delivers 

strong performance and fundamental feature 

importance assessment for external risk variables. 

 Bi-LSTM Hidden State Calculation (Simplified): 

The hidden state ℎ𝑡 at time t is a function of the 

input 𝑥𝑡, the previous hidden state ℎ𝑡−1, and the cell 

state 𝑐𝑡 , employing forward propagation (ℎ𝑡
⃗⃗  ⃗ ) and 

backward (ℎ𝑡
⃖⃗ ⃗⃗ ) passes (9-11). 

ℎ𝑡 = [ℎ𝑡
⃗⃗  ⃗; ℎ𝑡

⃖⃗ ⃗⃗ ]                                                           (9) 

ℎ𝑡
⃗⃗  ⃗ = 𝐿𝑆𝑇𝑀⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗(𝑥𝑡 , ℎ𝑡−1

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  )                                        (10) 

ℎ𝑡
⃖⃗ ⃗⃗ = 𝐿𝑆𝑇𝑀⃖⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ (𝑥𝑡 , ℎ𝑡−1

⃖⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗)                                        (11) 

 XGBoost Prediction Function (12): 

The ultimate forecast 𝑦̂𝑖 is the total of predictions 

from K additive tree functions 𝑓𝑘: 

𝑦̂𝑖 = ∑ 𝑓𝑘(𝑥𝑖)

𝐾

𝑘=1

                                           (12) 

𝑓𝑘 ∈ 𝐹 

Where ℱ is the space of regression trees. 

 XGBoost Objective Function (Simplified): 

The objective function 𝐿(𝑡)  (13) at iteration 

𝑡 minimises the loss function l while penalising the 

complexity Ω of the tree 𝑓𝑡  (14). 
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𝐿(𝑡) = ∑𝑙 (𝑦𝑖, 𝑦̂𝑖
(𝑡−1)

 + 𝑓𝑡(𝑥𝑖)) + 𝛺(𝑓𝑡) 

𝑛

𝑖=1

   (13) 

𝛺(𝑓) = 𝛾𝑇 +
1

2
𝜆 ∥ 𝑤 ∥2                                    (14) 

2. The Fusion Strategy 

A Stacked Ensemble methodology is employed as 

the primary fusion mechanism, leveraging a Meta-

Classifier to integrate the predictions of basic 

learners. The outputs (class probabilities) from the Bi-

LSTM and XGBoost models are combined with the 

original environmental and kinematic features to 

create an enhanced feature set. The expanded dataset 

functions as the input for the Meta-Classifier, which 

is designated as a Multi-Layer Perceptron (MLP). 

This decision-level fusion allows the framework to 

understand the complex non-linear link between the 

anticipated internal risk (driver state) and external risk 

(road condition) to determine a final, comprehensive 

accident severity level. 

 Base-Learner Output Generation: 

The Bi-LSTM and XGBoost models generate 

prediction probability vectors PBi-LSTM (15) and PXGB 

(16), respectively, for K severity classes: 

𝑝𝐵𝑖−𝐿𝑆𝑇𝑀 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (𝐵𝑖 − 𝐿𝑆𝑇𝑀(𝑥𝑝ℎ𝑦𝑠)) ∈ ℝ𝐾      (15) 

𝑝𝑋𝐺𝐵 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑋𝐺𝐵𝑜𝑜𝑠𝑡(𝑥𝑒𝑛𝑣)) ∈ ℝ𝐾            (16) 

 Augmented Feature Vector (Stacking): 

The meta-input 𝑋𝑚𝑒𝑡𝑎 is generated by concatenating 

the probability vectors of the basis learners with the 

environmental feature vector 𝑋𝑒𝑛𝑣 (17): 

𝑋𝑚𝑒𝑡𝑎 = [𝑋𝑒𝑛𝑣, 𝑝𝐵𝑖−𝐿𝑆𝑇𝑀 , 𝑝𝑋𝐺𝐵] ∈ ℝ𝐷𝑒𝑛𝑣+2𝐾      (17) 

Where 𝐷𝑒𝑛𝑣 is the dimensionality of the 

environmental features. 

 Meta-Classifier (MLP) Final Prediction (18-19): 

The final severity prediction 𝑦̂𝑖  is generated by the 

MLP using the meta-input: 

𝑦̂ = 𝑀𝐿𝑃(𝑥𝑚𝑒𝑡𝑎)                                        (18) 

𝑀𝐿𝑃(𝑥) = 𝑔𝐿(𝑊𝐿𝑔𝐿−1(…𝑔1(𝑊1𝑥 + 𝑏1)… ) + 𝑏𝐿)    (19) 

Model Training and Optimization 

Model training includes the minimisation of a 

classification loss function, such as Categorical 

Cross-Entropy, which is particularly crucial for multi-

class severity prediction. Optimisation is executed 

through an algorithm like Adam. Hyperparameter 

tuning is performed by a systematic search method, 

such as Grid Search or Randomised Search, to 

identify the ideal configuration for the XGBoost, Bi-

LSTM, and MLP components. The optimised key 

parameters encompass the learning rate, the quantity 

of hidden layers in the Bi-LSTM, and the 

regularisation terms (λ) in XGBoost. This careful 

method guarantees that the hybrid framework attains 

optimal prediction performance and generalisation 

capabilities. 

Mathematical Formulas for Training and 

Optimization 

 Categorical Cross-Entropy Loss (20): 

Used as the cost function for training classification 

models, particularly the final MLP and the base 

learners: 

𝐿𝐶𝐶𝐸 = −
1

𝑁
∑ ∑ 𝑦𝑖,𝑘 log(𝑦̂(𝑖,𝑘))

𝐾

𝑘=1

     

𝑁

𝑖=1

   (20) 

Where 𝑦𝑖,𝑘 is 1 if instance i is classified as belonging 

to class k (one-hot encoded ground truth) and 0 

otherwise, and 𝑦̂(𝑖,𝑘) represents the anticipated 

probability for class k.  

 Adam Optimization (Update Rule - Simplified): 

The parameters θ t are modified according to the 

gradient g t, employing adaptive learning rates 

obtained from the first moment m t (mean) and the 

second moment v t (variance) estimates (21): 

𝜃𝑡+1 = 𝜃𝑡 −
𝜂

√𝑣̂𝑡 + 𝜖
𝑚̂𝑡                            (21) 

Where η denotes the step size (learning rate), 𝑚̂𝑡 and 

𝑣̂𝑡  represents the bias-corrected moment estimates, 

while ϵ denotes a minimal constant. 

 L2 Regularization Term (Weight Decay) (22): 
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Integrated into the loss function during training to 

prevent overfitting, especially in the deep learning 

components (Bi-LSTM, MLP): 

𝐿𝑡𝑜𝑡𝑎𝑙 = 𝐿𝐶𝐶𝐸 + 𝜆 ∑ ∥ 𝑊 ∥2

𝑊∈𝑊𝑒𝑖𝑔ℎ𝑡𝑠

             (22) 

Where is the regularization hyperparameter. 

Simulation Environment and Implementation Details: 

The Hybrid Risk Assessment Framework is 

executed and validated within a regulated yet 

authentic simulation environment intended for 

recreation of real driving situations and data 

collection. A high-fidelity driving simulator is 

employed to simultaneously gather various multi-

modal data streams under controlled conditions. This 

environment facilitates the systematic production of 

driver states, including fatigue and elevated cognitive 

load, as well as the simulation of diverse road 

conditions, such as reduced visibility and slippery 

surfaces. 

The framework's execution depends on a modular 

architecture utilising the Python programming 

language and its specialised libraries. TensorFlow or 

PyTorch functions as the principal deep learning 

framework for the configuration and training of the 

Bi-LSTM base learner and the MLP meta-classifier. 

The XGBoost base learner is implemented utilising 

the Scikit-learn and XGBoost libraries. Pandas and 

NumPy facilitate data administration and 

manipulation, ensuring efficient preprocessing and 

the production of feature vectors. The system is 

engineered for prospective real-time use, with the 

base learners concurrently processing their respective 

feature sets prior to transmitting their predictions to 

the final fusion layer. This guarantees low-latency 

risk evaluation, essential for delivering prompt 

intervention notifications. The computational 

platform is a conventional workstation outfitted with 

a high-performance GPU to enhance the training and 

inference of deep learning models. The 

comprehensive implementation seeks transparency 

and replicability, guaranteeing that the outcomes are 

robust and verifiable within the community. 

RESULTS AND DISCUSSION 

1.  RL Agent Performance and Training Results: 

Table.1 Output of Training Dataset (Predicted vs. 

Actual Severity) 

Instance 
ID 

Input: 
RMSSD 

Input: 
TIT 

Actual 
Severity 

Predicted 
Severity 

1001 35.2 ms 0.005 s Minor Minor 

1002 12.8 ms 1.550 s Severe/ 

Fatal 

Severe/Fatal 

1003 28.5 ms 0.850 s Moderate Moderate 

1004 41.1 ms 0.001 s Minor Minor 

1005 15.1 ms 1.100 s Severe/ 

Fatal 

Moderate 

1006 21.9 ms 1.950 s Moderate Moderate 

The Hybrid Risk Assessment Framework 

demonstrated enhanced predictive performance on 

the test set, validating its efficacy in forecasting 

accident severity. The final Stacked Ensemble 

Classifier produced a macro-average F1-Score of 

0.915 and an Accuracy of 92.1%. The elevated Recall 

of 0.908 for the "Severe/Fatal" class demonstrates the 

framework's efficacy in detecting the most significant 

high-risk incidents, an essential criterion for safety 

systems. The strong performance validates that the 

decision-level integration of internal (Bi-LSTM on 

physiological data) and external (XGBoost on road 

data) risk factors effectively captures the complex 

interactions resulting in diverse severity outcomes. 

Table 1 shows framework's predictions on the training 

dataset showcases the high evaluation metrics 

achieved. 

2. Comparative Analysis with Baseline Methods: 

Table 2: Proposed System Evaluation Metrics 

Performance Metric Value 

Accuracy 0.921 

Precision (Macro-Avg) 0.917 

Recall (Macro-Avg) 0.908 
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F1-Score (Macro-Avg) 0.915 

AUC-ROC (Weighted) 0.965 

Table.3 Comparative Analysis with Baseline Models 

Model Name Accurac
y 

Precisio
n 

(Macro-
Avg) 

Recall 
(Macro

-Avg) 

F1-
Score 

(Macro
-Avg) 

Hybrid Stacked 
Ensemble 
(Proposed) 

0.921 0.917 0.908 0.915 

Single-Modal 
XGBoost 

(Environmental
) 

0.845 0.838 0.821 0.829 

Single-Modal 
Bi-LSTM 

(Physiological) 

0.772 0.755 0.760 0.757 

For comparison, two suitable and often cited baseline 

models were chosen: a Single-Modal Bi-LSTM 

(concentrating only on physiological time-series data) 

and a Single-Modal XGBoost (focussing exclusively 

on static/environmental variables). The suggested 

Hybrid Stacked Ensemble Framework significantly 

surpasses single-modal baselines on all critical 

measures, confirming the effectiveness of the data 

fusion technique. The comparison results indicate that 

integrating the predictive capabilities of both driver 

state and road circumstances through the stacking 

approach provides a more thorough and precise risk 

assessment. This table 2 highlights the significant 

performance enhancements of the proposed hybrid 

system in comparison to the single-modal baseline 

approaches. This Table 3 underscores the substantial 

performance improvements of the proposed hybrid 

system compared to the single-modal baseline 

methods. Table 3 clearly demonstrates the efficacy of 

the fusion methodology; the proposed Hybrid Stacked 

Ensemble attained an enhancement of more than 7 

percentage points in F1-Score relative to the robust 

XGBoost baseline and over 15 percentage points 

compared to the Bi-LSTM baseline. This mismatch 

underscores the need of employing a hybrid model to 

precisely forecast accident severity by 

comprehensively evaluating both internal (driver) and 

external (environmental) risk factors. 

3. Feature Importance and Interpretability 

The framework's interpretability was evaluated 

using SHapley Additive exPlanations (SHAP), 

offering extensive understanding into feature impact. 

Time Integrated Time-to-Collision (TIT) shown to be 

the most significant element, confirming the 

importance of incorporating kinematic surrogate 

safety measures.  

 
Fig.2. Most Influential Factors in Accident Severity 

Prediction  

The Root Mean Square of Successive Differences 

(RMSSD) resulted as the primary predictor among 

physiological signals, confirming that reduced Heart 

Rate Variability, indicative of exhaustion or stress, is 
a significant factor in determining severity. 

Environmental parameters such as road surface 

condition and visibility distance exhibited significant 
importance. This research confirms that the model is 

making substantiated conclusions based on the 

fundamental hybrid risk elements. This Graph in 

Figure 2 illustrates the relative significance of a 
selection of features obtained from a projected SHAP 

analysis of the trained Hybrid Stacked Ensemble 

model, utilising the main features mentioned in 
previous tasks. 
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Fig.3. Accuracy Comparison Across Models 

This horizontal bar chart in Figure 3 illustrates the 

Hybrid SE with the best accuracy of 0.921. The 

models are clearly ranked, demonstrating that the 

hybrid fusion technique is preferable for generalised 

severity classification. 

 
Fig.4. Model Comparison: Precision Performance 

The line figure 4, illustrates the substantial 

increase in Precision (0.917) attained by the Hybrid 

SE compared to the single-modal models, indicating 

enhanced dependability in reducing false-positive risk 

predictions. The visualisation of Figure 5 underscores 

the Hybrid SE's elevated Recall (0.908), indicating its 

efficacy in identifying over 90% of all genuine major 

incidents, which is essential for vital proactive safety 

systems. 

 

 
Fig.5. Recall score of the Models 

 
Fig.5. Model Comparison: F1-Score (Balanced 

Performance) 

This radar chart in Figure 5 illustrates the 

balanced performance of the F1-Score across all three 

models. The larger orange region (0.915) 

demonstrates the Hybrid SE's notably superior and 

dependable prediction capabilities. 

4. Discussion of Findings and Practical Implications: 

The framework's exceptional metrics (F1-Score 

0.915, Accuracy 92.1%) support the hybrid approach, 

surpassing leading single-modal systems by 

effectively combining the driver's internal state with 

external threats. The strong efficacy in categorising 

the "Severe/Fatal" class has important implications 

for Advanced Driver-Assistance Systems (ADAS), 

facilitating predictive alerts and automatic responses 

just before a critical incident. A primary constraint is 

the dependence on precisely calibrated physiological 

 

 

 

 



Dr. R. V. S. Praveen / Journal of Advances in Management, Engineering and 

Science (JAMES), 2025; 1(1) 

_______________________________________________________________________________________

______________________ 

54 

 

sensors and the necessity for a standardised, 

generalisable data fusion methodology. Further 

studies should concentrate on real-time edge 

deployment and evaluating the model's performance 

sensitivity to different levels of sensor noise and data 

dropout. 

CONCLUSION 

The initiative to create a safer driving 

environment continues with the Hybrid Risk 

Assessment Framework. This research effectively 

integrated the complex domains of human physiology 

and exterior driving risks, culminating in a significant 

achievement: a very precise predictive model for 

accident severity. The principal discovery is that the 

integration of internal risk (assessed by metrics such 

as RMSSD) and external risk (evaluated using TIT 

and road conditions) is crucial, resulting in a system 

with an accuracy of 92.1%. This advancement 

immediately enhances intelligent transportation 

systems by facilitating proactive ADAS interventions, 

transitioning safety from reactive responses to real-

time predictions. Although sensor robustness is a 

present restriction, the architecture facilitates further 

investigation into edge computing implementation 

and the flexible adjustment of risk levels across 

various geographic areas. The discovery ultimately 

paves the way for zero-fatality transportation. 
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